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Abstract. We investigate numerically, using the bond-fluctuation model, the adsorption of many random
AB-copolymers with excluded volume interactions at the interface between two solvents. We find two
regimes, controlled by the total number of polymers. In the first (dilute) regime, the copolymers near the
interface extend parallel to it, while in the second regime they extend perpendicular to it. The density at
the interface and the density in the bulk depend differently on the total number of copolymers: In the first
regime the density at the interface increases more rapidly than in the bulk, whereas the opposite is true
in the second regime.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 83.70.Hq Heteroge-
neous liquids: suspensions, dispersions, emulsions, pastes, slurries, foams, block copolymers, etc.

1 Introduction

Recently copolymers at selective interfaces have received
much attention [1–6]. Consider as an example a block
copolymer consisting of a hydrophilic and a hydrophobic
part and situated next to an oil-water interface. The dif-
ference in the monomers’ selectivity (which we denote by
kTχ) favors the localization of the copolymer at the inter-
face, with each block in its favorable solvent. However, for
random copolymers frustrated situations may arise, since
the chain’s connectivity forces some monomers to stay in
their unfavorable solvent. Garel et al. [3] have studied the
localization transition of an ideal random chain at a se-
lective interface. In previous publications [7,8] we have
extended this approach to single chains under good sol-
vent conditions, and we have shown that for the adsorp-
tion of random copolymers a simple scaling picture works
very well. The scaling picture is based on the fact that the
static properties of a single adsorbed chain consisting of
N monomers may be understood in terms of blobs. A blob
is made of g monomers; hence in it one of the monomer
species is on the average in excess by g1/2. The blob stays
in its preferred solvent as long as its total interface selec-
tivity, ∼ g1/2χkBT , counterbalances its translational free
energy, kBT . This leads to gχ2 = C, where C is a model
dependent numerical constant. For our lattice simulation
model C turns out to be larger than 10. Usually this con-
stant C (which does not play any role in a scaling argu-
mentation) is set to unity. It follows that the number of
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blobs in the chain, N/g, equals Nχ2/C. In fact Nχ2 turns
out to be the scaling variable of the problem, as we have
confirmed through Monte-Carlo simulations [7,8]. In refer-
ence [9] we extended our analysis to asymmetric interface
potentials, so that the chain as a whole prefers one solvent
side. This problem leads to two new critical exponents (as
predicted from scaling); we succeeded in evaluating these
exponents based on our simulation data [9].

The present article is devoted to copolymer systems
consisting of many chains, so that the polymer bulk den-
sity ρb is significant. As we proceed to show, due to their
interaction with the interface and depending on ρb the
copolymers display (at least) two distinct regimes. At very
low ρb the interface is only partially covered with ad-
sorbed blobs; the shape of the adsorbed chains is rather
flat, since their extension is larger parallel to the inter-
face than perpendicular to it. In fact, the extension of
isolated chains perpendicular to the interface does not de-
pend on N , but only on the interface selectivity χ [7,8].
As ρb increases, the adsorbed, flat chains influence each
other through excluded volume interactions. The chains
at the interface form thus a two-dimensional semi-dilute
solution. Increasing ρb further leads to an interface com-
pletely saturated with blobs; thus the interface density ρs
depends in a complex manner on ρb. If the adsorption is
strong enough, i.e. if the free energy of adsorption per
chain is much larger than kT , the surface can become sat-
urated for values of ρb for which the volume phase is still
highly diluted. Then the adsorbed chains form large loops,
resulting in an adsorption layer width which is of the or-
der of the radius of gyration of the polymers in the bulk.
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This effect is well-known for homopolymer adsorption [10,
11]. However, increasing ρb beyond the saturation value a
different behavior emerges: The chains extend in the di-
rection perpendicular to the interface, since the loops of
the adsorbed chains begin to stretch in a hairpin-like fash-
ion. Such a brush-like regime for multiblock-copolymers at
selective interfaces was recently predicted by Leclerc and
Daoud [12]. The reason for this behavior is that the major-
ity blobs (or blocks in Ref. [12]) can be squeezed without
much loss of interface energy, since only the alternation
of the two blob types across the interface fixes the chain.
In this way more polymer chains can be adsorbed at the
interface.

Our simulation results confirm this picture qualita-
tively. Distinct from the behavior of adsorbed homopoly-
mers, we report here for ρb larger than a characteristic
value ρ∗b the stretching of the adsorbed copolymers in the
direction perpendicular to the interface and their contrac-
tion parallel to it. This paper is organized as follows: In
Section 2 we briefly describe the model we use for the
simulations. Numerical results are presented in Section 3.
Section 4 contains our conclusions.

2 Simulation algorithm

Our Monte-Carlo simulations for copolymers were per-
formed using the bond-fluctuation method (BFM) [13,14].
The BFM is a lattice algorithm where each monomer is
represented by a lattice cell. Thus on a three-dimensional
simple cubic lattice each monomer occupies eight neigh-
boring lattice sites. The length of a bond connecting two
neighboring monomers fluctuates between 2 and

√
10 lat-

tice spacings [13,14]. Self-avoidance (the excluded volume
interaction) is satisfied by not allowing any two monomers
to have a lattice site in common. To avoid bond-crossing
the allowed bonds are restricted to a set of 108 vectors [13–
15]. Here we study the behavior of n random copolymers,
each of length N , all placed in a box of size L×L×H, with
periodic boundary conditions in the x- and y-directions
and two impenetrable surfaces at z = 0 and z = H.
The copolymers are random; for each of them separately
the N -monomer sequence consists of randomly chosen A-
and B-monomers. The assignment of the A’s and B’s
along each chain is uncorrelated, each species being cho-
sen with a a priori probability of 1/2. Therefore, on each
chain the number of A and B monomers differs because of
the statistical fluctuations associated with the assignment
procedure.

For adsorption we assume a symmetrical situation: the
interaction energy of each monomer with its unfavorable
solvent is χkBT and with its favorable solvent is zero. We
let the solvent below the interface (z ≤ H/2) favor A-
type, and the solvent above the interface (z ≥ H/2 + 1)
B-type monomers. Note that the interface is thus at
z0 = (H + 1)/2. In the Monte-Carlo algorithm the chains
move by position changes of their monomers, which at-
tempt nearest neighbor steps on the underlying cubic lat-
tice. A move is taken into consideration only if it satisfies
the requirements of self-avoidance and of non-breaking of

bonds. Furthermore, energetically unfavorable moves are
statistically permitted according to the usual prescription
involving the Boltzmann factor [16].

3 Simulation results

We study the density dependence of the adsorption prop-
erties by changing n, the number of polymers in the
L × L × H box. Here we take L = 50 and H = 100 and
focus on the results obtained using copolymers of length
N = 64 with a monomer-solvent interaction parameter
of χ = 3.15. Results for other copolymer lengths and for
other χ parameters will be mentioned when appropriate.
Note that in the single chain case (n = 1) the parameters
N = 64 and χ = 3.15 let the system be located in the well
adsorbed scaling regime, see references [7,8].

An initial configuration is generated by randomly plac-
ing the first monomer of each polymer in the system and
then randomly adding the subsequent monomers, such
that self-avoidance and the restrictions on the bonds are
obeyed. The energetic aspects of the interaction with the
solvents are then taken care of by the usual Boltzmann fac-
tor; the monomer-monomer interaction is only accounted
for through the excluded volume aspect. This means that
both solvents are good for both species. We established
numerically that the relaxation time (determined using
the autocorrelation function of the radius of gyration Rg
and of its z-component Rg⊥ [17]) is around 50 000 Monte-
Carlo steps (MCS), where a MCS consists of nN move
attempts; we thus view the copolymers as having reached
equilibrium after 200 000 MCS. Averages are then calcu-
lated from the configurations obtained in the subsequent
200 000 MCS. In order to improve the statistics we average
over results from 8 independent runs.

In Figure 1a we plot the densities of the A-type
monomers (ρA) and of the B-type monomers (ρB) as a
function of the height z. We pause to make clear how these
densities are normalized. In the lattice, bond-fluctuation
model used here, the maximal number of monomers which
can be accommodated in the given volume is 1

8L
2H, since

due to the excluded volume restrictions each monomer
blocks 8 lattice sites. In our system containing n chains of
N monomers each the total number of monomers is nN ;
hence the average density is ρ̄ = 8Nn/(L2H). Now the
densities ρA and ρB satisfy the relation

1

H

∑
z

(ρA(z) + ρB(z)) = ρ̄. (1)

The number of polymers in Figure 1a is n = 50. Com-
paring with the results for single chain, Figure 1 of refer-
ence [7], we find that now the monomer densities are still
nonzero quite far away from the interface (i.e. from z = 10
to z = 30 and from z = 70 to z = 90 in Figure 1a). Fur-
thermore, at such distances ρA and ρB are equal and are
independent of z. In this range we identify this constant
with the bulk density. When approaching the impenetra-
ble boundaries at z = 0 and at z = 100, ρA and ρB drop
to zero. In the following we will not consider the range
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(a)

(b)

Fig. 1. (a) Densities of the A-monomers (ρA) (diamonds) and
of the B-monomers (ρB) (crosses) at the height z. Here the
number of polymers is n = 50, the length of all polymers is
N = 64, and the monomer-solvent interaction parameter is
χ = 3.15; (b) Display of |ρA + ρB| vs. z.

from z = 0 to z = 10 and from z = 90 to z = 100 any
further. Close to the interface ρA and ρB peak on their
favorable side. The densities decay smoothly on their fa-
vorable side and sharply across the selective interface, so
that their values on the unfavorable side near the interface
lie below the bulk density. This differs from our findings
for single chain, for which we found that the bulk density
is zero and that densities close to the interface on the un-
favorable side display a secondary peak [7]. In Figure 1b
we show ρA + ρB as a function of z. The result is a sym-
metric peak centered at the interface and superimposed
on a bulk density background.

In Figure 2a we plot the bulk density ρb against the
average density ρ̄, as given by equation (1). We see that
ρb becomes extremely low for large χ and small ρ̄ (but
does not disappear completely). The density ρb increases
linearly with ρ̄ for larger ρ̄. Figure 2b shows the density
at the interface ρs = (ρA(H/2) + ρB(H/2) + ρA(H/2 +
1) + ρB(H/2 + 1))/2 as a function of ρ̄. For small ρ̄, ρs in-
creases rapidly, while for larger ρ̄ it increases more slowly,
the cross-over region being around ρ̄ ' 0.02. From the fig-
ure the almost linear increase of ρs in the range of large ρ̄
is also clear. Figure 2c shows a plot of ρs versus ρb, where
again the two regimes can be seen. To understand these
regimes we plot in Figure 2d ρs−ρb against ρ̄. In terms of
Figure 1b ρs−ρb is in fact the peak’s height relative to the
background. We see from Figure 2d that ρs−ρb attains its
maximum around ρ̄c ' 0.02. For ρ̄ < ρ̄c, ρs − ρb increases
with increasing ρ̄ while for ρ̄ > ρ̄c it decreases with in-
creasing ρ̄. This means that in the low ρ̄ regime (ρ̄ < ρ̄c)
adding more polymers to the system leads mainly to an
increase in density at the interface, whereas for higher ρ̄
values (ρ̄ > ρ̄c) adding more polymers to the system leads
to an overall increase in density in the bulk. In the sec-
ond regime both ρs and ρb increase almost linearly with ρ̄,
whereas ρs−ρb decreases roughly linearly with increasing
ρ̄. We note that this linear behavior cannot persist forever;
an extrapolation to ρs − ρb = 0 leads to ρ̄ ' 0.95, an un-
physical result in the BFM-framework, where ρ̄ ' 0.6 cor-
responds already to the dense melt. We hence infer that
the surface density saturates before ρ̄ reaches the melt
regime, resulting in a more rapid decrease of ρs − ρb.

For the record, we like to point out that varying the
copolymers’ length, using N = 64 and N = 128, we ob-
tained plots almost identical to those shown in Figure 2.
For different χ parameters (χ = 2.20, 3.15 and 4.20), we
find that ρb is independent of χ while ρs increases with in-
creasing χ in the second regime. For a few polymers in the
dilute regime, we have found ρb is considerably changed
as the parameter χ changes: the larger χ, the smaller ρb.

The difference between ρA and ρB provides a means
to quantify the interfacial selectivity. Figure 3a displays
the data for n = 50. We plot ρA−B ≡ |ρA − ρB| as a
function of z; this leads to a symmetric peak. We find in
this density regime (ρ̄ ' 0.1) that the width W of the
peak is independent of N but is controlled by χ. Fig-
ure 3b shows how the width of the peak in Figure 3a
varies as a function of ρ̄ for different χ. Here the width
is taken as full width at half-height (FWHH), i.e. the dif-
ference z2− z1, with ρA−B(z1) = ρA−B(z2) = 1

2ρA−B(z0),
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Fig. 2. (a) The bulk density (ρb) vs. the average density (ρ̄), see text for details; (b) The density at the interface (ρs) vs. ρ̄; (c)
ρs vs. ρb; (d) ρs − ρb vs. ρ̄.
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(a) (b)

(c)

Fig. 3. (a) ρA−B (the absolute value of ρA − ρB) vs. the height z. Here n = 50; (b) The FWHH of Figure 3a vs. ρ̄ for three
different χ parameters, χ = 2.20 (diamonds), χ = 3.15 (crosses), χ = 4.20 (squares); (c) ρA−B(z0) vs. ρ̄, with z0 being the
interface’s location.
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where ρA−B(z0) is the density at the interface (the peak’s
height in Fig. 3a). The small fluctuations of W (ρ̄) at very
small values of ρ̄ have to be viewed as artifacts, resulting
from interpolations effects.

Actually in order to characterize this peak width we
have also evaluated numerically the second moment of the
distribution of Figure 3a but found indications that the
second moment is not well defined [18]. In Figure 3c we
show the peak’s height ρA−B as a function of ρ̄ and we
find that the relationship is linear above ρ̄c.

Keeping in mind that the interfacial selectivity affects
mostly the chains close to the interface, i.e. the adsorp-
tion layer, see Figure 3b, we turn now to a comparative
study of the polymers’ behavior around the interface and
also away from it. For this we compute Rg⊥ and Rg‖,
the z- and the xy-components of the radius of gyration of
each copolymer. The center of mass of the kth polymer is

R
(k)
CM =

∑N
i=1 R

(k)
i /N , where R

(k)
i = (x

(k)
i , y

(k)
i , z

(k)
i ) are

the coordinates of the ith monomer within the kth chain.
For the kth chain, R

(k)
g⊥ = (

∑N
i=1(z

(k)
i −z

(k)
CM)2/N)1/2, and

R
(k)
g‖ = (1

2

∑N
i=1[(x

(k)
i −x

(k)
CM )2+(y

(k)
i −y

(k)
CM)2]/N)1/2. Now

we have to specify which copolymers belong to the space
around the interface. For this we use a σ-criterion: If the
z-component of the polymer’s center of mass is within a

distance σ from the interface, i.e. if |z(k)
CM − z0| ≤ σ, we

view the polymer as being near the interface, otherwise
as being far from it (here again we disregard the far-off
regions close to the fixed boundaries). Now, evidently 2σ
should be taken larger than the peak’s FWHH. Since the
FWHH, Figure 3b, depends on ρ̄, we choose σ = 10 in
what follows (we checked that the choice of σ does not
change the features reported below, provided that 2σ is

reasonably larger than the FWHH). We now average R
(k)
g⊥

and R
(k)
g‖ for the polymers near the interface to obtain

Rg⊥ and Rg‖; we do the same for the polymers far from

the interface, which leads to R̃g⊥ and R̃g‖. In Figure 4a
and Figure 4b we present plots of Rg⊥ and Rg‖ and of

R̃g⊥ and R̃g‖ as functions of ρ̄.
Let us first consider the bulk phase, away from the in-

terface. As can be readily inferred from Figure 4b, R̃g⊥ is

close to R̃g‖ for all ρ̄, which means that the bulk copoly-
mers’ shape is not affected by the interface and that it is
isotropic in space. Note that the large fluctuations of the
data points for small ρ̄ values arise from the fact that al-
most no chains are located in the bulk until the interface
is saturated, see also Figure 2a.

The situation is completely different for polymers near
the interface, Figure 4a. For very small values of ρ̄, Rg⊥
is considerably smaller than Rg‖; hence adsorbed chains
tend to be rather flat. Figure 4a shows that Rg‖ decreases
monotonically with increasing ρ̄, whereas the opposite is
true forRg⊥. This is analogous to the behavior of adsorbed
homopolymers, as discussed by Bouchaud and Daoud [10].
Comparing Figure 4a with Figure 2c one notes that the
chain’s extension is, in contrast to the surface density, a
smooth function of ρ̄ also at the saturation value ρ̄c. How-
ever, increasing the density beyond the value ρ̄∗ ' 0.05,

(a)

(b)

Fig. 4. (a) Radius of gyration for polymers near the interface:
Rg⊥ (diamonds) and Rg‖ (crosses) vs. ρ̄; (b) Radius of gyration

for polymers away from the interface: R̃g⊥ (diamonds) and R̃g‖
(crosses) vs. ρ̄.
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where Rg‖ = Rg⊥, the extension perpendicular to the in-
terface gets to be larger than the parallel extension. This
is in accordance with reference [12], which predicts (as
discussed in the introduction) that above a characteris-
tic bulk concentration the loops of the adsorbed chains
will stretch in the direction perpendicular to the inter-
face, in a hairpin-like fashion. Note that also the chain’s
extension parallel to the interface, Rg‖, decreases below

its bulk value R̃g‖ (compare Figs. 4a and 4b), i.e. the ad-
sorbed chains begin to get squeezed parallel to the inter-
face. Thus varying the bulk concentration only by a small
amount (0 < ρb < 0.1) the chain’s geometry changes from
a flat, pancake-like shape into a brush-like assembly of
stretched loops. This picture is also supported by the be-
havior of ρs as a function of ρ̄ in the saturated surface
regime (ρ̄ > ρ̄c). As can be inferred from Figure 2b, the
surface concentration increases even beyond the satura-
tion threshold ρ̄c.

4 Conclusions

We have investigated the behavior of many random
copolymers in the presence of a selective interface. Pre-
vious studies [3,6–8] showed that a simple scaling picture
works very well for random copolymer adsorption. In this
paper we have extended our previous work to consider
the effects of sizeable chain concentrations. We found that
there are at least two regimes controlled by the polymer
density, as can be inferred from Figures 2 and 4a.

In the very low density regime (except for the adsorp-
tion mechanism) copolymers at interfaces behave similarly
to homopolymers at surfaces. Starting from a single chain,
which in the adsorbed state is flat, an increase in the
chains’ density leads to their crowding at the interface.
As usual for polymer adsorption, the interface may be
fully covered by chains even when the bulk density is still
highly diluted. This can be easily understood from the
fact that the adsorption energy per chain is in most cases
a huge quantity compared to the translational free energy
per chain, i.e. to kT . It is worth noting that our simula-
tions are canonical, i.e. the number chains in the volume
is fixed. For very low bulk concentrations (less than one
chain in the bulk volume in average), artifacts due to the
finite simulation box will appear, since a desorbed chain
(bulk chain) returns more frequently to the interface com-
pared with the infinite volume limit, thus producing an
effectively lower bulk concentration. However, also exper-
iments will usually be done in a “canonical” state, where
the bulk acts as a chain reservoir. If the surface attraction
is very high and the surface is not saturated the bulk con-
centration can drop below any measurable value. Here a
canonical simulation might depict the situation even bet-
ter than a grand canonical one. For large values of ρb the
thermodynamical differences between canonical and grand
canonical models get to be unimportant.

In the second regime, however, where the interface is
already covered, the only way of adding more chains to
it is to squeeze the chains in a brush-like fashion. As a

consequence, Rg⊥, the radius of gyration of the adsorbed
chains perpendicular to the interface exceeds the average

value R̃g⊥ in the bulk. A means of picturing this situation
is a brush-like assembly of stretched loops [12].
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